Contents

1. General
2. Flight deck layout
3. Electrical system
4. Hydraulic system
5. Flight controls
6. Landing gear
7. Fuel system
8. Engine controls
9. Auxiliary power unit
10. Automatic flight system
11. Environmental flight system
12. Electronic instrument system
13. Radio management and communication
14. Maintenance centralized fault display system
1. General
A319/A320/A321 General

A319

A320

A321
A319/A320/A321 general

<table>
<thead>
<tr>
<th></th>
<th>A319-100</th>
<th>A320-100</th>
<th>A320-200</th>
<th>A321-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>34.10m (111ft 10in)</td>
<td>33.91m (111ft 3in)</td>
<td>34.10m (111ft 10in)</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>33.84m (111ft)</td>
<td>37.57m (123ft 3in)</td>
<td>44.51m (146ft)</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>11.76m (38ft 7in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuselage Diameter</td>
<td>3.95m (12ft 11in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track</td>
<td>7.59m (24ft 11in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. pax</td>
<td>145</td>
<td>180</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Max. FL</td>
<td></td>
<td>390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Manuf.</td>
<td>Type</td>
<td>Engine</td>
<td>Operation limits</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>A319-111</td>
<td>CFM</td>
<td>CFM56-5B5</td>
<td>MTOW: 64 000</td>
<td>MLW: 61 000</td>
</tr>
<tr>
<td>A319-112</td>
<td>CFM</td>
<td>CFM56-5B6</td>
<td>MLW: 68 000 or 70 000</td>
<td>MZFW: 58 000</td>
</tr>
<tr>
<td>A319-113</td>
<td>CFM</td>
<td>CFM565A4</td>
<td>MLW: 68 000 or 70 000</td>
<td>MZFW: 58 000</td>
</tr>
<tr>
<td>A319-114</td>
<td>CFM</td>
<td>CFM56-5A5</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A319-115</td>
<td>CFM</td>
<td>CFM56-5B7</td>
<td>MLW: 68 000 or 70 000</td>
<td>MZFW: 58 000</td>
</tr>
<tr>
<td>A319-131</td>
<td>IAE</td>
<td>V2522-A5</td>
<td>MLW: 68 000 or 70 000</td>
<td></td>
</tr>
<tr>
<td>A319-132</td>
<td>IAE</td>
<td>V2524-A5</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A319-133</td>
<td>IAE</td>
<td>V2527-M-A5</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A319 Corporate Jet</td>
<td>CFM</td>
<td>CFM56-5B6/5B7</td>
<td>MTOW: 75 500</td>
<td>MLW: 62 500</td>
</tr>
<tr>
<td>A320-111</td>
<td>CFM</td>
<td>CFM56-5-A1</td>
<td>MLW: 68 000 or 70 000</td>
<td></td>
</tr>
<tr>
<td>A320-211</td>
<td>CFM</td>
<td>CFM56-5A1/5A3</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A320-212</td>
<td>CFM</td>
<td>CFM56-5A3</td>
<td>MLW: 68 000 or 70 000</td>
<td></td>
</tr>
<tr>
<td>A320-214</td>
<td>CFM</td>
<td>CFM56-5B4</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A320-231</td>
<td>IAE</td>
<td>V2500-A1</td>
<td>MLW: 68 000 or 70 000</td>
<td></td>
</tr>
<tr>
<td>A320-232</td>
<td>IAE</td>
<td>V2527-A5</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A320-233</td>
<td>IAE</td>
<td>V2527E-A5</td>
<td>MZFW: 58 000</td>
<td></td>
</tr>
<tr>
<td>A321-111</td>
<td>CFM</td>
<td>CFM56-5B1</td>
<td>MTOW: 83 000</td>
<td>MLW: 73 500</td>
</tr>
<tr>
<td>A321-112</td>
<td>CFM</td>
<td>CFM56-5B2</td>
<td>MLW: 78 000 or 85 000</td>
<td></td>
</tr>
<tr>
<td>A321-131</td>
<td>IAE</td>
<td>V2530-A5</td>
<td>MLW: 74 500</td>
<td>MZFW: 70 500</td>
</tr>
<tr>
<td>A321-211</td>
<td>CFM</td>
<td>CFM56-5B3</td>
<td>MLW: 74 500</td>
<td>MZFW: 70 500</td>
</tr>
<tr>
<td>A321-231</td>
<td>IAE</td>
<td>V2533-A5</td>
<td>MLW: 74 500</td>
<td>MZFW: 70 500</td>
</tr>
</tbody>
</table>
The A319/A320/A321 are narrow body, twin-engined, short / medium-range aircraft, the A319 being the shortened version of the A320, and the A321 being the stretched version of the A320.

They both offer an increased fuselage cross-section leading to an increased revenue potential through:

- greater passenger comfort with wider seats and aisle
- greater overhead baggage volume
- greater cargo capacity
- wide-body compatible container capability
- quicker turnrounds.

Advanced technology applied to aerodynamics, structure, systems and powerplant offer reduced costs through:

- unmatched fuel efficiency
- more accurate flight path control
- reduced maintenance costs
- increased reliability
- reduced trouble-shooting time.

Introduced for airline service in March 1988, the A320 represents the largest single advance in civil aircraft technology since the introduction of the jet engine and results in a major stride forward in airline profitability.

A computer-managed system gives complete protection against excursions outside the normal flight envelope and greatly improves the man / machine interface.
2. A319/A320/A321 flight deck layout
An observer seat aft of the pedestal offers maximum visibility over all panels.

A fourth occupant seat is offered as an option.
A319/A320/A321 flight deck - general arrangement

Foward view

Ceiling light Reading light
Sun visor
Assist handle
Rope stowage F / O boomset stowage
F / O boomset jack panel
Air conditioning outlet
Roller sunblind Cup holder
Window control handle
Sidestick Flash light
Hand microphone Briefcase
Ashtray lighting
Operational manual Nosewheel
stowage steering ct
Briefcase
Check list stowage
Flight documents stowage
Portable fire extinguisher 3rd occupant quick donning oxygen mask
Waste stowage
Air conditioning outlet

STL 945.7136/97 2.4
A319/A320/A321 flight deck - general arrangement

Rear view

Right corner

- Secondary circuit breakers
- Primary circuit breakers
- Hand microphone
- Hat holder
- Jack panel
- Headset stowage
- Portable oxygen bottle
- Full face mask
- 3rd occupant seat
- Axe
- Safety locker
- Life vest

Left corner

- Hat stowage
- Bulbs, fuses stowage
- Rain repellant bottle
- Coat stowage
- Seat unlock
- 4th occupant seat (optional)
- Life vest
A319/A320/A321 flight deck – pilot’s field of view

Improved pilot vision

Wing tip visible

Pilot axis

Aerospace standard 580 B

A319/A320/A321
Visibility

- Windows are designed to meet or exceed the Aerospace standard 580 B.

Geometry :

- windshield panels : flat glass
- lateral windows : curved acrylic.

Clear surface of each window :

Windshield panel 0.52m² each
Lateral sliding window 0.36m² each
Lateral rear window 0.30m² each
Flight deck total 2.36m²

This geometry improves external aircraft monitoring, thereby increasing safety standards :

- downward visibility in the pilot axis is 20°
- wing tips visible from respective pilot stations.
A319/A320/A321 flight deck – main features

Control and indication panels in bold outline
A319/A320/A321 flight deck – main features

- The main features:
 - sidestick controllers which leave the main instrument panel unobstructed
 - six display units (DU) interchangeable, switchable and integrated into the same system architecture (EFIS / ECAM)

- The other features evolve directly from the concepts introduced with the A300 / A310 family:
 - ergonomic layout of panels, synoptically arranged according to frequency of use (normal, abnormal, emergency) within easy reach and visibility for both crewmembers
 - philosophy of panels (e.g., “lights out” philosophy for overhead panel)
 - principles of presentation on information (“need to know” concept)
 - monitoring of systems through an Electronic Centralized Aircraft Monitor (ECAM)
 - coherent system of colour coding for EFIS, ECAM and panel lights.
Sidesticks are installed on the CAPT and F / O forward lateral consoles.

An adjustable armrest to facilitate free wrist movement is fitted on each seat.

The sidestick works against a spring force proportional to the angular displacement.

Sidestick includes:

- radio communication trigger
- a take-over button for autopilot disconnection and priority take-over.
A319/A320/A321 flight deck – sidestick operation

- Moving the sidestick results in “setting the aircraft trajectory” with a certain level of “g” for the requested manoeuvre depending on the amount of sidestick movement.

- Movement is very precise since backlash and friction are negligible.

- Control of the flight path is performed by the Electronic Flight Control System (EFCS) which links the trajectory order with aerodynamic data to stabilize the aircraft and protect it from prohibited attitudes.
The CAPT and F / O panels are mirror image of each other ; both incorporate two side-by-side Display Units (DU's) (7.25in x 7.25in) :

- a Primary Flight Display (PFD)
- a Navigation Display (ND).

This arrangement facilitates :

- a better visibility on all Dus in normal configuration and in case of reconfiguration (PFD ND or ECAM ND)
- The possibility to install a sliding table (option) and a footrest in front of each pilot.

Primary flight display includes the complete Basic T with :

- attitude
- airspeed / Mach (with all upper ad lower limits)
- altitude / vertical speed
- heading
- AFS status
- ILS deviation / maker
- radio altitude

Navigation display offers three modes :

- ROSE mode (ILS, VOR or NAV): heading up, aircraft symbol in screen centre, with radar available,
- ARC mode : heading up, horizon limited to a 90° forward sector, with radar available,
- PLAN mode : north up, display centered on selected waypoint.

Note : In ROSE-NAV, ARC, and PLAN modes, MAP data from FMS is presented.
The centre panel groups:

- two Dus, one above the other, same size and interchangeable with the CAPT and F/O Dus:

Engine Display (DU 1), showing:

- the main engine parameters: N1, EGT; N2 (CFM) or EPR, EGT, N1, N2 (IAE)
- thrust limit and command
- total fuel
- the flaps and slats position
- memo and warning.

System Display (DU 2) showing:

- presentation of system synoptic diagrams
- status of the aircraft (list of all operationally significant items)
- standby instruments
- landing gear control and indications (including brakes)
- clock
A319/A320/A321 flight deck – glareshield
- The Flight Control Unit (FCU) provides short-term interface between the FMGC and crew for:
 - engagement of A/P, FD, ATHR
 - selection of required guidance modes
 - manual selection of flight parameters SPD, MACH, ALT, VSPD, HDG or track.

- The EFIS control panels for:
 - selection of desired ND modes (ROSE-ILS, -VOR, ARC, PLAN) and ranges,
 - selection of baro setting.

- The master warning, master caution, autoland and sidestick priority lights.
A319/A320/A321 flight deck – pedestal

- Pitch trim wheel
- Thrust and thrust reverse control levers
- Landing gear gravity gear extension handle
In addition to the thrust levers and the engine control functions, the main features on the pedestal are:

- The Multipurpose Control and Display Units (MCDU) for flight management functions and various other functions such as data link, maintenance etc…

- The Radio Management Panel (RMP) for tuning of: all radio communications and the radio navigation as a back-up to the normal operation through the Flight Management and Guidance Computers (FMGC).

- The electrical rudder trim.

- A handle at the rear of the pedestal enables the gravity landing gear function, to be operated easily and rapidly.
A319/A320/A321 flight deck – overhead panel

- 3rd and 4th occupant air outlets
- Fire controls
- Standby electrics
- CVR microphone
- Maintenance panel
- Pedestal light
- 3rd audio control
- 3rd RMP (option)
- Flight control
- Cargo smoke
- Options
- Cargo heat
- Vent
- Engine
- Internal lights and signs
- APU control
- Overhead panel

CVR microphone

Spare

Spare

3rd and 4th occupant air outlets

Fire controls

Standby electrics

CVR microphone
The overhead panel is “single slope” and one inch higher than on previous Airbus aircraft.

All controls on the overhead panel can be reached by either pilot.

Two main zones are separated by protective padding:

- **Forward zone**:
 - for most frequently used functions at the front of the panel
 - for system controls: arranged in three main rows:
 - center row for engine related systems arranged in a logical way
 - lateral rows for other systems

- **Aft zone**, not used in flight, mainly:
 - for circuit breakers corresponding to essential systems necessitating segregation
 - for a small maintenance panel corresponding to some systems not linked to the Centralized Fault and Display System (CFDS).

The push-button philosophy is identical to that already applied on existing Airbus aircraft.
3. Electrical system
A319/A320/A321 electrical system architecture
A319/A320/A321 electrical system architecture

The electrical power generation comprises:

- Two **engine-driven AC generators**, nominal power 90kVA
- One auxiliary power unit (APU) **AC generator**, nominal power 90kVA
- One **emergency generator**, nominal power 5kVA, hydraulically driven by the Ram Air Turbine (RAT), automatically deployed in case of main generators loss
- One **ground connector**, power 90kVA.
- DC network supplied via three identical Transformer / Rectifier Units (TRU):
 - two of them are normally used
 - the third is used:
 - in emergency configuration (loss of main AC generators)
 - in case of TR 1 or TR 2 failure
- **Two batteries**, nominal capacity 23Ah each
 - on ground: to provide an autonomous source mainly for APU starting
 - in emergency configuration to feed some equipment:
 - during RAT deployment
 - after landing gear extension (only for A320).
A319/A320/A321 normal electrical flight configuration
In normal configuration, both normal AC systems are split

Each engine-driven generator supplies its associated AC BUS via its Generator Line Contactor (GLC).

AC ESS BUS is normally supplied from AC BUS via a contactor.

DC BAT BUS and the DC ESS BUS are normally powered by the TR 1.

Two batteries are connected to the DC BAT BUS via the Battery Charge Limiter (BCL).

Each battery has its own HOT BUS bar (engine / APU firesquib, ADIRS, CIDS, ELAC 1, SEC 1, slide warnings, parking brake etc).
A319/A320/A321 normal electrical flight configuration

Loss of main electrical generators – EMER GEN running
A319/A320/A321 normal electrical flight configuration

- In case of failure, the failed generator is automatically replaced by:
 - the APU generator if available
 - the other main generator with automatic partial galley load shedding.

- In case of total loss of all main generators, the RAT is automatically extended and drives the emergency generator via a hydraulic motor.

 The EMER GEN supplies the AC ESS BUS and the DC ESS BUS via the ESS TR.

 The ECAM WD remains powered, with associated procedures presented.

 Alternate law is operative through ELAC 1 and SEC 1.
A319/A320/A321 electrical – control and display

System display:

ELEC system page

Normal configuration

Control panel

Batteries indication

Buses indication

Transformer / Rectifier

Generator indication

Integrate Drive Generator indications
Circuit breakers (C / Bs) are constantly monitored and the tripping of a C / B will be clearly indicated:

- activation of a system warning
- a failure test
- an abnormal instrument configuration

or, for C / Bs monitored by the ECAM system:

- six zones have been defined
- each time a C / B trips, the corresponding zone is identified

Overhead panel

Emergency circuit breaker

Rear right panel

Secondary circuit breakers (aircraft systems)

Primary circuit breakers (electrical generation)
4. Hydraulic system
A319/A320/A321 hydraulic system architecture

(*) only for A320
A319/A320/A321 hydraulic system - general

- Three fully independent systems: **Green, Yellow, Blue**.

- Normal operation:
 - two engine-driven pumps (one each - Green and Yellow systems)
 - one electric pump (Blue system)

- Abnormal operation:
 - if engine No. 1 inoperative or Green pump failed: then Green system pressurized by the reversible Power Transfer Unit (PTU)
 - if engine No. 2 inoperative or Yellow pump failed: then Yellow system pressurized by the reversible PTU
 - if Yellow system pump inoperative and PTU failed: then an electric pump will pressurize the Yellow system.
 - if case of dual engine failure or total electrical power loss: the Ram Air Turbine (RAT) will pressurize the Blue system.

- On ground:
 - Blue and Yellow systems may be pressurized by electric pumps.
 A handpump (operated from the ground on the yellow system) facilitates manoeuvring of the cargo doors.
 - Green/Yellow system may be pressurized by the PTU.
A319/A320/A321 hydraulic - control and display

Control panel

System display:

- **HYD system page**
- **RAT**
- **Engine pump**
- **Reservoir quantity indication**
- **System label**
- **System pressure**
- **Power Transfer Unit**
- **Yellow electrical pump**
- **Fire valve position**

- **TAT + 19 °C**
- **SAT + 18 °C**
- **23 H 56**
- **G.W. 60300kg**
5. Flight controls
The Electrical Flight Control System (EFCS) provides:

- Safety improvements (stall / windshear / overstress / overspeed protection)

- Economical aspects
 - weight saving = $\Delta W > 200\text{kg}$ considering the impact on AFS
 A319/A320/A321 plus same weight gain on wing structure due to integration of load alleviation function (A320 only).
 - maintenance costs decreased
 - training costs decreased
 - production costs decreased

- Improvements in handling and comfort
 - flight handling improvement
 - new cockpit concept
A319/A320/A321 flight controls surfaces

- Rudder
- Elevator
- Trimmable horizontal stabilizer
- Speed brakes
- Roll spoilers
- Lift dumpers
- Load alleviation function (only for A320)
- Aileron
- Flaps
- Slats
A319/A320/A321 flight controls surfaces

- Control is achieved through conventional surfaces
- All the surfaces are hydraulically actuated
- Roll and pitch control is electrical:
 - elevator
 - ailerons
 - roll spoilers
 - trimmable horizontal stabilizers
 - slats and flaps (single flap surfaces for A320 and A319, double slotted surfaces for A321)
 - speedbrakes / ground spoilers.
- Yaw control is mechanical:
 - rudder (yaw damping, turn coordination and trim are electrically ensured)
- Mechanical back up:
 - trimmable horizontal stabilizers
A319/A320/A321 EFCS command principle

Commands
- Autopilot
- Sidestick
- Slats/flaps
- Rudder pedals

Digital computers
- ELACS (2)
- SECs (3)
- FACs (2)
- SFCCs (2)

Electro / hydraulic jacks
- Hyd. jacks
- Elevator
- Stabilizer
- Ailerons
- Spoilers
- Rudder
- Slats
- Flaps

Electrical orders
- Autopilot
- Sidestick
- Slats/flaps
- Rudder pedals

Mechanical back up
- elevator
- stabilizer
- ailerons
- spoilers
- rudder
- slats
- flaps

Hydraulic jacks
Flight control is achieved by three types of computer:

- **Two ELACs** (Elevator Aileron Computer) to ensure commands of:
 - normal elevator and stabilizer
 - aileron

- **Three SECs** (Spoiler Elevator Computer)
 - three computers achieve spoiler control
 - two of them are devoted to standby elevator and stabilizer control

- **Two FACs** (Flight Augmentation Computer)

 Two computers which achieve electrical rudder control and characteristics speeds calculation for displays on PFD.

 In addition

 - two **SFCCs** (Slats Flaps Control Computer)
 - two **FCDCs** (Flight Control Data Concentrator) acquire data from ELACs and SECs and send them to ECAM and CFDS.
Classic and Fly-by-Wire (FBW) controls compared

Classic flight controls

- Directly proportional relationship between pilot stick input and control surface position.

- Aircraft response depending on aircraft dynamics and flight envelope area coverage.

- Airworthiness and aircraft performance requirements leading to increasingly complex system:
 - variable artificial feel to modulate pilot forces with flight conditions (efforts / g),
 - hydraulically powered servocontrols, servoed autopilots, control wheel steering,
 - stall protection devices (stick shaker, stick pusher),
 - stability augmentation systems (Mach trim, speed trim, angle-of-attack trim, roll and yaw damping).

Fly-by-wire controls

- No directly proportional relationship between pilot stick input and control surface position.

- Computers’ response to stick input modulating servocontrolled jacks to satisfy:
 - normal, alternate or direct laws (pitch, roll and yaw axes),
 - optimised flight control characteristics (easy handling, good stability),
 - improved safety: overspeed, stall, windshear, manoeuvre and attitude protections.
Autotrim function

Control surface autotrim function

Ground or Z < 100 ft*

Ground

Electric trim

GAIN

GAIN

NZ

(θ and Ø compensated)

GAIN

θ

Z < 100 ft*

THS

Elevator

Z < 100 ft*

* Before landing
A319/A320/A321 normal law – pitch axis

- Manoeuvre demand law as basic flight mode
 - neutral speed stability with full flight envelope protection

- Vertical load factor control proportional to stick deflection: C^* law
 - independent of speed, weight, center of gravity;
 - stick displacement: $\Delta N_z = n \quad N_z = n + 1g$
 - stick neutral: $\Delta N_z = 0 \quad N_z = 1g$

- Flight path stability instead of speed stability
 - control inputs are made to alter the flight path, not to hold it.

- Medium-term flight path stability:
 - maintenance of parallel trajectory 1g in pitch even after atmosphere disturbance.

- Automatic pitch trim eliminating need to correct for speed or configuration changes:
 - electric autotrim function holding elevator position for constant flight path,
 - control surface autotrim function returning elevators to the THS trail.

- Automatic elevator for bank angle compensation up to 33°.
A319/A320/A321 normal law – pitch axis

- Adaptation of basic control law objectives to:
 - Ground phase: **ground mode**
 Direct relationship between stick and elevator available before lift-off and after touch-down
 - Take-off phase: **take-off mode**
 For smooth transition, blend of ground phase law and N_z command law over 5 seconds after lift off.
 - Landing phase: **landing mode**
 At 50ft the attitude is memorized as reference pitch attitude.
 At 30ft this value is progressively reduced to 2° nose down to induce gentle positive pilot action for a conventional flare.
Roll rate demand (15° / Sec max.) as basic flight mode:

- Coordinated roll and yaw surfaces deflections:
 - to achieve and maintain bank angle up to 33°, stick released

Bank angle protection above 33°:

- positive spiral stability restored up to 67° inside normal flight envelope
- limit of 67° bank angle

Lateral control laws providing handling quality features such as:

- bank angle resistance to disturbance, stick free,
- precise piloting
- good turn coordination,
- dutch roll damping,
- sideslip minimization.

Sidestick free with pedal deflection results in stabilized sideslip and bank angle facilitating “de-crabbing” in crosswind landings.

Engine failure or aircraft asymmetry compensation consisting of:

- If no pilot action:
 - stabilized sideslip and bank angle followed by,
 - automatic rudder trimming to compensate asymmetric thrust
 - slowly diverging heading.

- Recommended action:
 - zero sideslip target with pedals (take-off, go-around),
 - heading stabilization with stick input,
 - steady flight stick free / no pedal forces (rudder trim).

Adaptation of basic control law objectives to:

- Ground phase: ground mode
 - Direct relationship between stick and roll control surfaces
 - Rudder: mechanical control from pedals + yaw damper function

Transition from ground to in-flight law (and vice versa)
Switching over in 0.5 second after lift-off or touchdown.
A319/A320/A321 control laws – reconfiguration logics

Normal law

- Double self-detected ADC or IRS failure
- or double (2nd not self-detected) ADC failure
- or triple ADC failure
- or double ELAC failure
- or double FAC failure
- or double SFCC slat channel failure

or double hydraulic failure (B+G) or Y+G)
- or double aileron failure
- or loss of all spoilers
- or THS jammed
- or emergency power supply

Alternate law

- Triple IRS failure
- or double radio-altimeter failure (when landing gear extended)

Direct law

- Double (2nd not self-detected) IRS failure

Crew action (identification of failed IRS)
Flight mode as basic control laws:

- pitch axis: as normal law, stick deflection to change N_z.
- roll/yaw axes: direct stick-to-roll-surface relationship, speed, configuration and surface availability dependent,
- automatic pitch trim.

Loss of flight envelope protections except:

- manoeuvre protection against excessive load factor
- low speed stability
- conventional aural stall and overspeed warning

Reversion of basic control law:

- alternate law not being adapted to landing phase - automatic reversion to direct law after landing gear extension.

Automatic reconfigurations after loss of basic control law in either axis.
A319/A320/A321 direct law and mechanical back-up

Direct law

- On all axes:
 - direct stick to elevator or roll control surface relationship,
 - center of gravity, configuration and surface availability dependent.

- Manual trimming through trim wheel:
 - amber message on PFD ("USE MAN PITCH TRIM")

- Loss of all flight envelope protections:
 - conventional aural stall and overspeed warning.

- Automatic reconfiguration after loss of basic control law in either axis.

Mechanical back-up

- Highly improbable operational necessity.

- To sustain the aircraft during a temporary complete loss of electrical power.

- Longitudinal control of the aircraft through trim wheel. Elevators kept at zero deflection.

- Lateral control from pedals.

- Manual trimming through trim wheel:
 - red message on PFD ("MAN PITCH TRIM ONLY")
A300 flying testbed equipped with dual sidestick/ FBW system (left side) and control column conventional flight control system (right side).

Two pilots twice flew each of the following three flight conditions in well-specified and demanding experimental circuits:

- Flight Director (FD) : FD and autothrottle system on,
- ILS (raw data) : FD and autothrottle system off,
- NDB (non-precision) : FD, autothrottle and ILS off.

The following measurements of recorded flight parameters were calculated when appropriate and compared for flying with the sidestick and conventional controls:

- Mean : average of 1 second values,
- Standard deviation : amount of variation around the mean,
- Rate zero : number of sign changes per minute,
- Reversal rate : number of direction reversals per minute.
Performance comparison of sidestick/FBW and conventional controls

Roll and pitch angles
- Standard deviation

<table>
<thead>
<tr>
<th>Control</th>
<th>Conventional</th>
<th>Sidestick/FBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Roll, pitch and yaw rates
- Standard deviation

<table>
<thead>
<tr>
<th>Control</th>
<th>Conventional</th>
<th>Sidestick/FBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll Rate</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Pitch Rate</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Yaw Rate</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Acceleration
- Transitions through zero

<table>
<thead>
<tr>
<th>Control</th>
<th>Conventional</th>
<th>Sidestick/FBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>11.2</td>
<td>8</td>
</tr>
<tr>
<td>Lateral</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Roll, pitch and yaw rates
- Transitions through zero

<table>
<thead>
<tr>
<th>Control</th>
<th>Conventional</th>
<th>Sidestick/FBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll Rate</td>
<td>19.2</td>
<td>17.5</td>
</tr>
<tr>
<td>Pitch Rate</td>
<td>15.7</td>
<td>11.1</td>
</tr>
<tr>
<td>Yaw Rate</td>
<td>10.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>
Performance comparison: major results and conclusions

- All measurements of smoothness and stability favoured the sidestick by a large margin:
 - for roll and pitch angles and rates, standard deviations and rate through zero were reduced by 20% or more when flying with the sidestick,
 - accelerations in all three axes showed a large reduction in standard deviation and rate through zero when flying with the sidestick.
Performance comparison of sidestick/FWB and conventional controls

N1 engine No.1
Standard deviation

Control
× Conventional
+ Sidestick

N1 engine No.1
Reversal rate

Control
× Conventional
+ Sidestick

Pitch trim + elevator
+ aileron reversals
vs
Any sidestick reversal

Reversal Type
○ Trim + Elevator + Aileron
+ Sidestick Pitch or Roll
Performance comparison: major results and conclusions

- All parameters related to fuel burn showed significantly better values with sidestick:
 - the sidestick/EFCS combination should improve fuel economy through unnecessary control surface movements and increased rear C.G. limits.

- Pilot control inputs were reduced by 50% or more and the system still achieved much better overall performance:
 - lower pilot workload should allow more time for dealing with emergencies and managing flight efficiency.
A319/A320/A321 EFCS architecture

2 Elevator/Aileron Computers (ELAC)

3 Spoiler/Elevator Computers (SEC)

LAF* = Load Alleviation Function (A320 only)

**THS = Trimmable Horizontal Stabilizer

B – Blue system
G – Green system
Y – Yellow system

Hydraulic

LH Elevator

B – Blue system
G – Green system

Mechanical

2 Elevator/Aileron Computers (ELAC)

Ground spoiler
Roll
Speed brake

LH Aileron
G Y B Y G

B G

ELAC 1 2
SEC 2 1 1 3

Normal control

THS actuator**

G Y

LH Elevator

B G

2 1 1 2

1 2

2 1 ELAC
SEC

LH Elevator

Y B

2 1

2 1 SEC

Mechanical

STL 945.7136/97
Use of dissimilar redundancy

- Two types of computer:
 - two ELACs to achieve aileron control and normal pitch control
 - three SECs to achieve spoiler control and standby pitch control
- No single type of μ P:
 - ELAC - Motorola 68000
 - SEC - INTEL 80186
- Each ELAC and SEC is divided into two units:
 - one Control Unit (COM)
 - one Monitoring unit (MON)
- Four different softwares:
 - ELAC COM + MON
 - SEC COM + MON.

- Physical separation of hardware for COM and MON units.

In addition, mechanical back-up (through rudder and stabilizer control) will ensure adequate control in case of temporary loss of all electrical power sources including batteries.
A319/A320/A321 EFCS electronic protections

Self tests

- Each computer is able to detect its own failures:
 - processor test (check sum, watchdog…)
 - electrical supply monitoring
 - input and output test
 - wrap around of output to input.

- Inputs are monitored:
 - by comparison of signals of the same type but sent by different sources
 - by checking the signal coherence.

Other protections

- Specific routes are dedicated to:
 - control signals
 - monitoring signals

- Signals are linked:
 - ELAC 1 and SEC 1 computers on one side
 - ELAC 2, SEC 2 and SEC 3 computers on the other side.

- ELAC and SEC computers are qualified in accordance with DO 160 for electrical susceptibility test, the most severe category (Z) being applied.

 - Wires are installed in metal shields in the exposed areas.
 - For each signal, wires are twisted.
 - No signal grounding in the exposed areas.
 - Computer inputs and outputs connected to exposed wires are protected against the most severe spikes.

- This protection, combined with the precautions taken in the software, ensure good protection against lightning strikes and electromagnetic disturbances.
Overspeed protection

- Positive load factor demand automatically applied when $V_{mo} + 6\text{kt}$ or $M_{mo} + 0.01$ is reached,
- Speed limited to $V_{mo} + 16\text{kt}$ and $M_{mo} + 0.04$ when full nose-down stick is maintained,

- V_{mo}/M_{mo} warning:
 - continuous repetitive chime
 - master warning light
 - overspeed red message on ECAM
 - red and black strip along the PFD scale.

- Bank angle limitation to 45°
A319/A320/A321 EFCS flight envelope protection

- **AOA protection – principle**
 - When α becomes greater than α_{prot}, the flight control normal law is replaced by an angle of attack law (angle of attack corresponds to stick displacement). Autotrim stops, resulting in a nose-down tendency.
 - If α reaches α_{floor} the auto-thrust system will apply go-around thrust.
 - The α_{max} cannot be exceeded even if the stick is pulled fully back.
 - At $\alpha_{max} + 4^\circ$ an audio stall warning (cricket + synthetic voice) is provided.

- **Consequences**
 - α_{prot} is maintained if sidestick is left neutral
 - α_{max} is maintained if sidestick is deflected fully aft
 - Return to normal law is obtained when sidestick is pushed forward.

- Amber strip on PFD indicates 1.13 V_s at take-off, or 1.23 V_s in other phases of flight.
● Manoeuvre protection

The objective is to limit the load factor so as to allow the pilot to apply full sidestick deflection when high manoeuvrability is required.

Load factor limits: +2.5g to 1g in clean configuration +2g to 0g flaps extended.

● Attitude protection

The objective is to complement AOA and high speed protection in extreme conditions and in windshear.

Bank is limited to: 33° stick released 67° stick fully deflected.

Pitch is limited to: 30° nose up 15° nose down.

If these limits are approached, the aircraft pitch and roll rate decrease and stop at the limit.
A319/A320/A321 EFCS flight envelope protection

● Windshear protection

Windshear protection is ensured by:

- SRS more
- speed trend indication
- wind (speed and direction indication)
- flight path vector
- high angle of attack protection
- windshear warning (optional).

● Low energy protection (basic on A321 and A319)

- An audio warning “SPEED, SPEED, SPEED” is triggered to indicate to the crew that a thrust increase is necessary to recover a positive flight path angle through pitch control.

● Load Alleviation Function (LAF) (only for A320)

- The load alleviation function is used in conditions of turbulence in order to relieve wing structure loads
- The LAF becomes active at more than 0.3g in which case the ailerons and the spoilers 4 and 5 are deflected symmetrically upwards
- The LAF is no longer necessary for A321 and A319 which benefit from a reinforced structure.
Both sidesticks are coupled electronically to deal with:

- simultaneous inputs
- conflicts.

Full control is obtained by pressing and keeping pressed the take-over button, thereby deactivating the other pilot’s stick.

After pressing the take-over button for more than 40 seconds, it can be released without losing priority.

When both pilots press their take-over buttons, the last pilot to press will get the priority.

Ongoing priority can be maintained throughout by keeping the button pressed continuously for 40s.
A319/A320/A321 EFCS sidestick priority display logic

<table>
<thead>
<tr>
<th>Captain’s side</th>
<th>First Officer’s side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidestick</td>
<td>Annunciation</td>
</tr>
<tr>
<td>Take-over button depressed</td>
<td>Red CAPT Green</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidestick deflected</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidestick in neutral</td>
<td>Red</td>
</tr>
</tbody>
</table>

Red arrow in front of the pilot = loss of authority

Green arrow in front of the pilot = authority when opposite sidestick deflected

"PRIORITY RIGHT.LEFT" audio voice message when priority is taken.
- **Speed brakes**

 - Achieves by three surfaces

 - When the sum of a roll order and a simultaneous speed brake order on either surface is greater than the maximum deflection achievable, the symmetrical surface is retracted until the difference between both corresponding surfaces is equal to the roll order.

 - If engine power is above idle, an amber message is displayed on ECAM.

- **Speedbrakes are automatically retracted when:**

 - selection of flaps configuration FULL for A320 and A319 (or 3 or FULL for A321)
 - AOA protection is active

- **Ground spoilers**

 - Preselection achieved:

 * with control handle in the armed position and idle thrust selected, or
 * by selecting reverse thrust

 - Maximal extension (50°) of all surfaces then automatically achieved when wheels speed >72kt.
- The flaps lever selects simultaneous operation of the slats and flaps.
- The five positions of the lever correspond to the following surfaces positions and flight phases:

<table>
<thead>
<tr>
<th>Position</th>
<th>Slats</th>
<th>Flats</th>
<th>Flight phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0°</td>
<td>0°</td>
<td>Cruise / Hold</td>
</tr>
<tr>
<td>1</td>
<td>18°</td>
<td>0°</td>
<td>Hold / Approach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10°</td>
<td>Takeoff</td>
</tr>
<tr>
<td>2</td>
<td>22°</td>
<td>15°(14°)</td>
<td>Approach</td>
</tr>
<tr>
<td>3</td>
<td>22°</td>
<td>20°(21°)</td>
<td>Approach / landing</td>
</tr>
<tr>
<td>FULL</td>
<td>27°</td>
<td>35°(*) (25°)</td>
<td>Landing</td>
</tr>
</tbody>
</table>

(*) : 40° for A320 with IAE engine or A319
() : setting for A321

- Computed by FACs, retraction speeds are presented on PFDs for:
 - minimum flaps retraction or F-speed,
 - minimum slats retraction or S-speed.
A319/A320/A321 EFCS indications

ECAM upper display

Slats/flaps indication

ECAM lower display

F / CTL page

Spoilers / speedbrakes

Ailerons position

Ailerons actuators

Pitch trim position

Elevator position

Hydraulic system pressure indication

Computers

Rudder position

STL 945.7136/97 5.35
6. Landing gear
Main feature

- Conventional tricycle or bogie (option) landing gear and direct-action shock absorbers.
- Main gear retracts laterally and nose gear forward into the fuselage.
- Electrically controlled by two Landing Gear Control/Interface Units (LGCIU).
- Hydraulically actuated with alternative free-fall/spring downlock mode
- Alternating use of both LGCIUs for each retraction/extension cycle.
- In the event of one LGCIU failure, resetting the landing gear control lever results in transition to the other LGCIU.
- Elimination of gear lever neutral position through automatic depressurization of landing gear hydraulic supply above 260kt.
- Elimination of microswitches by use of trouble-free proximity detectors for position sensing.

Braking system

The Braking and Steering Control Unit (BSCU) is a fully digital dual-channel computer controlling the following functions:

- normal braking system control
- anti-skid control (normal and alternate)
- auto brake function with LO, MED, MAX
- nosewheel steering command processing
- monitoring of all these functions
A319/A320/A321 landing gear - braking system

BSCU

Normal selector valve

Automatic selector

To other wheels

Normal servo valve

Green HP

Accu

Yellow HP

Control valve parking brake

Dual shuttle valve

To opposite wheel

Accumulator pressure

To other gear

Auxiliary LP distribution line

To other side dual valve

Pedals

To ECAM

To other gear
Carbon disk brakes are standard.

Normal system (Green hydraulic system supply):
- electrically signalled through anti-skid valves
- individual wheel anti-skid control
- autobrake function
- automatic switchover to alternate system in event of Green hydraulic supply failure.

Alternate braking system (Yellow hydraulic system supply):
- hydraulically controlled through dual valve
- individual wheel anti-skid control
- no autobrake function.

Emergency braking system (Yellow hydraulic system supply or Yellow brake power accumulator):
- hydraulically controlled by pedals with brake pressure indication on gauges
- no anti-skid control

Parking brake (Yellow hydraulic system supply or Yellow brake power accumulator):
- electrically signaled
- hydraulically controlled with brake pressure indication on gauges.
Pedals depressed, autobrake activated, gear retraction

Aircraft speed at touchdown (wheel tachy.)

Aircraft longitudinal deceleration (ADIRS)

\[\gamma_{\text{prog}} \]

\[\gamma_{\text{ir}} \]

\[V_{\text{o}} \]

\[V_{\text{o}} - \gamma_{\text{ir}, \text{t}} \]

Autobrake

Vprog

Release order

Vref

Wheel speed

BSCU 1

BSCU 2

OR

Green H.P.

Normal selector valve

Normal servo valve

\[V_{\text{prog}} \]

\[\text{Highest value} \]
A319/A320/A321 landing gear braking principle

Anti-skid system

- From touchdown, aircraft speed is computed based on touchdown speed (wheels) and integrated deceleration (ADIRS). This reference speed is compared with each wheel speed to generate a release order for closing the normal servo valve in case of skid exceeding 13%.

- Brake pedals order results in opening this servovalve also modulated by anti-ski closing signals.

Autobrake system

- From touchdown a specific speed is computed based on touchdown speed (wheels) and programmed deceleration (low, medium, max). This programmed speed is compared with each wheel speed to generate a release order for closing the normal servovalve to meet selected deceleration.

- If reference speed exceeds programmed speed (contaminated or iced runways) the former will take over for the anti-skid to modulate the normal servo valve.
A319/A320/A321 landing gear - nose gear steering principle

- Rudder pedal disconnect pushbutton
- Auto pilot
- Green hydraulic supply
- Steering servo valve

A/SKID & N/W STRG

ON
OFF

One engine running
Towing lever
Normal position
MLG Compressed

ELAC

OR
A319/A320/A321 landing gear

- Tyre pressure psi (optional)
- LDG door
- Hottest brake
- Anti-skid release indicator
- Ground spoiler extension

Wheel system page landing roll

- Gear downlock indication
- Brake temp. °C
- Autobrake indication

Autobrake panel and gear position indicator
(System 1)

Brake pressure indication
(alternate system)
7. Fuel system
A319/A320/A321 fuel system - ventilation

A319 / A320

- Surge tank
- Outer cell
- Inner cell
- Center tank
- Vent valve
- NACA intake
- Flame arrestor
- Pressure relief outlets
- Vent line
- Pressure relief outlets

A321

- Surge tank
- Wing tank
- Center tank
- Vent valve
- NACA intake
- Flame arrestor
- Pressure relief outlets
- Vent line
- Pressure relief outlets
A319/A320/A321 fuel system – basic layout

- **Total fuel capacity**

<table>
<thead>
<tr>
<th></th>
<th>A319 / A320</th>
<th>A321</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two outer cells</td>
<td>1 760 litres (1 408kg)</td>
<td>Two wing tank</td>
</tr>
<tr>
<td>Two inner cells</td>
<td>13 849 litres (11 079kg)</td>
<td>15 500 litres (12 400kg)</td>
</tr>
<tr>
<td>One center tank</td>
<td>8 250 litres (6 600kg)</td>
<td>One center tank</td>
</tr>
</tbody>
</table>

(Weight calculated with a density of 0.8

An additional center tank (optional) increases the total fuel capacity by 2 900 litres (2 320kg).

On the A319 Corporate Jet, up to 6 additional center tanks can be added to increase the total fuel capacity by up to 17 000 litres.

An additional volume of 2% is available for expansion without spillage into the vent surge tank.

- **Ventilation**

 - Each tank is separately ventilated via surge tanks at each wing tip.
 - The center tank is ventilated via the LH surge tank.
 - The surge tanks are opened to atmosphere via flame arrestors and NACA inlets.
 - Vent valves ensure correct operation of the vent system.
 - Pressure relief outlets protect the tanks from over- or under-pressure.
A319/A320 fuel system – engine feed

IAE Eng
- To burners
- HP Pump
- Filter
- Divert valve
- Fuel return valve
- Fuel/Oil heat exch.
- IDG cooling
- Oil out
- Oil in
- LP Pump
- LP Valve
- Fuel tank
- To outer tank

CFM Eng
- To burners
- IDG cooler
- HP Pump
- By pass valve
- Hot flow
- LP Pump
- Cold flow
- LP Valve
- Fuel tank
- To outer tank

Sequence valves
Fuel recirculation system
Suction valve (gravity feed)
APU LP valve twin actuators
APU pump
Defuel valve (ground only)
Cross feed valve twin actuators

Surge tank
Outer cell
Inner cell
Transfer valves

26
22
15
1

Center tank

STL 945.7136/97
A319/A320 fuel system – engine feed

A319/A320 definition

- Fuel is delivered to the engines by means of booster pumps.
 - Each tank is equipped with two identical booster pumps.
 - Center tank feeds first, except during take-off and fuel recirculation when center tank pumps are switched off automatically.
 - Wing tank pumps operate permanently at a lower pressure than center tank pumps.
 - Thus, when center tank pumps stop, engine feed comes automatically from wing tank pumps.

- Two electrical transfer valves are installed on each wing.
 They automatically open when the inner cell fuel reaches a low level (about 750kg) for fuel to drain from the outer to the inner cells.

- Fuel is recirculated automatically and transparently to the crew:
 It ensures the IDG cooling (CFM and IAE eng.) and the engine oil cooling (IAE only) through a set of valves controlled by the FADEC.
A321 fuel system – engine feed

IAE Eng
- To burners
- FMU
- HP Pump
- Filter
- Diverter valve
- Fuel return valve
- Fuel tank

CFM Eng
- To burners
- IDG cooler
- By pass valve
- Hot flow
- Fuel tank
- To outer tank

Surge tank
- Wing tank
- Recirculation line

Center tank
- Transfer valves
- Jet pumps
- APU LP valve (twin actuators)

Remote pick-up
(All pumps)

Sequence valve

Fuel recirculation system

Jet pumps

Suction valve
(gravity feed)

Cross feed valve
(twin actuators)

Defuel/transfer Valve twin actuators
(ground only)
A321 definition

The A321 fuel system has been simplified compared to the A319/A320:

- Single wing tank in place of two cells wing tank, suppression of the outer/inner cell transfer valves.

- Center tank transfer to wing tank in place of center tank feed to engines:

 When the transfer valves are open, fuel tapped from the wing pumps flows into the center tank jet pumps. It creates a depressurization which sucks the center tank fuel into the wing tanks.

 - a transfer valve automatically closes when the related wing tank is overfilled or when the center tank is empty.

The fuel recirculation principle is identical to A319/A320, the recirculated fuel being returned into the wing tank.
A319/A320/A321 fuel system – control and indications

A319/A320

OVERHEAD PANEL

- Fuel on board
 - Memo indications: systems temporarily used
 - Low pressure valve
 - Cross-feed valve
 - Pumps indication

A321

UPPER ECAM

LOWER ECAM

Fuel on board

- Low pressure valve
- Cross-feed valve
- Pumps indication
No crew action is required for normal operation.

Indications:
- Fuel data (quantity, temperature) are available from a Fuel Quantity Indication (FQI) system.
- Fuel quantity is permanently displayed on upper ECAM DU.
- Fuel system synoptic on lower ECAM DU is displayed according to ECAM logic.
- Low level warning is totally independent from FQI.

Abnormal operations:
- Fuel feed sequence may be operated manually.
- One or both engines may be fed from any tank via cross-feed valve.
- Gravity feed is possible from wing tanks.
A319/A320/A321 fuel system – refuel/defuel

In cockpit (optional)

Refuel panel:
- Fuel quantity indicator
- Refuel valve control
- Refuel preselector

Refuel coupling and cap

Fuselage datum line

Refuel coupling
Refuel/defuel control is from an external panel located in the fuselage fairing under the RH wing within easy reach from the ground.

One refuel/defuel coupling is located under the RH wing.

Identical coupling on LH wing is available as an option.

Refuelling is auto sequenced:

It starts with the outer cells (A319/A320) or the wing tanks (A321).
If the selected fuel quantity exceeds the wing tank capacity, the center tank is refuelled simultaneously.

Refuelling time at nominal pressure is approximately 20 minutes for all tanks.

Gravity refuelling can be achieved by overwing refuelling points.
8. Engine controls
Thrust control is operated through Full Authority Digital Engine Control (FADEC) computers which:

- command the engines to provide the best suited power to each flight phase
- automatically provide all the associated protection required:
 - either in manual (thrust lever)
 - or in automatic (autothrust) with a fixed thrust lever.

Engine performance and safety better than with current hydromechanical control system.

Simplification of engine/aircraft communication architecture.

Reduction of crew workload by means of automatic functions (starting, power management).

Ease of on-wing maintenance.

The system design is fault-tolerant being fully duplicated, with “graceful degradation” for minor failures (i.e. sensor failures may lose functions but not the total system).

The engine shut-down rate resulting from FADEC failures will be at least as good as today’s latest hydromechanical systems with supervisory override.

FADEC is an electronic system which incorporates a fully redundant Engine Control Unit (ECU) and an Engine Interface Unit (EIU).

Each engine is equipped with a FADEC which provide the following operational functions:

- gas generator control
- engine limit protection
- engine automatic starting
- power management
- engine data for cockpit indication
- engine condition parameters
- reverser control and feed back.
A319/A320/A321 engine controls – FADEC architecture

- Thrust Lever 1
- TLAA
- TLAB
- Engine Parameters
- ENG MAN START
- MASTER 1
- MASTER 2
- ENG 1
- ENG 2
- ADIRS 1+2
- THRUST REVERSER SYSTEM
- START VALVE
- IGNITION SYSTEM
- HYDROMECHANICAL UNIT
- FUEL RECIRCULATION VALVE
- ZONE CONTROLLER
- BLEED Status
- FMGS
- GRND/FLT
- ENGINE INTERFACE UNIT 1 (ECU)
- ECU CHANNEL A
- ECU CHANNEL B
- SYSTEMS DISPLAYS
- ENGINE/WARNINGS DISPLAY
- ENGINE INTERFACE UNIT 1 (ECU)
A319/A320/A321 engine controls – ECU and EIU

One ECU located on the engine with dual redundant channels (active and standby) each having separate 28V DC aircraft power sources to ensure engine starting on ground and in flight.

In addition dedicated ECU alternator assures self power above 12% N2 for CFM56 (10% N2 for IAE V2500).

Dual redundancy for electrical input devices (ADIRS 1+2, TLAs, engine parameters).

Dual redundancy for electrical part of control actuator.

Simplex system for hydromechanical parts of the control.

Fault tolerance and fail operational capability.

High level of protection against electromagnetic disturbance.

The interface between the FADEC system and the other aircraft systems is mainly performed by the EIU through digital data buses.

One EIU per engine is located in the avionics bay.

Care is taken to preserve systems segregation for safety and integrity.
A319/A320/A321 engine controls – CFM56

28 VDC
ARINC data buses

Engine control unit

Control signals

Starter air valve / starter

Monitoring signals (optional)

Ignition
Alternator
Hydromech. unit

Thrust reverser

Starter

HPT

Fuel

CC

PS₁₂

PS₁₃

P₀

N₁

T₁₂

N₂

T₂₅

PS₃

T₃

T₅

P₂₅

PS₁₂

Fuel flow

T fuel
A319/A320/A321 engine controls – V2500

Electronic engine control

28 VDC

ARINC data buses

P₀

Feedback

Ignition

Alternator

Hydromech. unit

Thrust reverser

Starter air valve / starter

Monitoring signals (optional)

P₁₂.₅

P₂.₅

T₂.₅

P₀

N₂

P₂

P₅

P₃

T₄.₉

T₃

HPT

Fuel

CC

VSV

VBV

Fuel flow

T fuel

T2

N1
A319/A320/A321 engine controls – thrust control schematic

CFM56

- N1 Thrust lever comput.
- N1 limit
- N1 limit
- N1 target
- THR
- ECU
- Manual mode
- Auto mode
- Fuel flow control
- Actual N1

ADC
FMGC
- TLA out of ATS range
- Disengaged
- ATS
- or

EIU
Instinctive disconnect PB
ATS not active

ECU

Upper ECAM DU

- IDLE
- FLX
- FOB
- 18000 KG
- 85.4% ac c
- 601
- 606
- 67.1
- 55
- 67.2
- 55

- N1 limit computation
- N1 limitation

- Actual N1

- Disengaged

- FMGC
- or

- THR
- Auto mode
- Manual mode
- Fuel flow control

- EIU
- Instinctive disconnect PB
- ATS not active

- Actual N1

- ECU
- Manual mode
- Auto mode
- Fuel flow control

- Upper ECAM DU
- IDLE
- FLX
- FOB
- 18000 KG
- 85.4% ac c
- 601
- 606
- 67.1
- 55
- 67.2
- 55

- N1 limit computation
- N1 limitation

- Actual N1

- Disengaged

- FMGC
- or

- THR
- Auto mode
- Manual mode
- Fuel flow control

- EIU
- Instinctive disconnect PB
- ATS not active

- Actual N1

- ECU
- Manual mode
- Auto mode
- Fuel flow control

- Upper ECAM DU
- IDLE
- FLX
- FOB
- 18000 KG
- 85.4% ac c
- 601
- 606
- 67.1
- 55
- 67.2
- 55
IAE V2500

- EPR Thrust lever comput.
- EPR limit comput. and selec.
- EPR limit limitation
- EPR target limitation
- EPR target
- Trottle
- Auto mode
- Manual mode
- Fuel flow control

- TLA out of ATS range
- FMGC
- EIU
- ADC
- Actual EPR

- Disengaged
- ATS not active

- Instinctive disconnect PB

- Upper ECAM DU
- Disengaged

- N1 mode selection
- or

- EEP
- EGT
- FLX
- F.F
- KG
- H
- 1500

- Upper ECAM DU
- EPR
- IDLE
- EPR
- 1.223
- 1.503

- SMART
- Upper ECAM DU
- 1500
- 13000 KG
Limited thrust parameters (N1 for CFM56, EPR for V2500) computed by FADEC.

Selection of thrust limit mode obtained directly by throttle position:
Six positions defined by detents or stops.

Thrust lever only to be moved manually (no servomotor): lever position not necessarily representing engine thrust delivered.

According to the thrust lever position the FADEC computes:

- Thrust rating limit (no TRP)
- N1 (EPR) when in manual mode
- N1 (EPR) which can be achieved in
 - Go Around (GA)
 - Max Take-Off (TO)
 - Max continuous (MCT)
 - Flex. Take-Off (FLX)
 - Max Climb (CL)
 - Idle
 - Reserve idle
 - Max reserve
 - Reserve

ATS max operating range

Command f (TLA)

Mode selection

Thrust limit T.O/GA

Thrust limit FLX TO/Max Cont

Max take-off

Max continuous

Climb

Cruise

Max reserve

Idle

Thrust

Max reserve

Max climb

Max continuous

Cruise

Max take-off

Idle

Go Around (GA)

Max Take-Off (TO)

Max continuous (MCT)

Flex. Take-Off (FLX)

Max Climb (CL)

Idle

Reserve idle

Max reserve

Reserve

ATS max operating range

STL 945.7136/97
A319/A320/A321 engine controls indications (CFM56) on ECAM upper DU

Appears when both engines at IDLE (*)

Transient N1 during ATS operation corresponding to FMGC demand to go to N1 target

Symbol corresponding to the thrust lever position

Max N1

Max permissible N1

IDLE

Flex temperature (entered through MCDU)

N1 actual

N1 rating limit

S

F

FLX

3

Exhaust gas temperature

SEAT BELTS

NO SMOKING

FOB : 18000 KG

Thrust limit mode

* Basic on A319/A321
A319/A320/A321 engine controls indications (IAE 2500) on ECAM upper DU

Appears when both engines at IDLE (*)

Transient N1 during ATS operation corresponding to FMGC demand to go to EPR target

Symbol corresponding to the thrust lever position

Actual EPR

Exhaust gas temperature

Actual N1

Max EPR

Thrust limit mode

Flex temperature (entered through MCDU)

EPR rating limit

Max permissible N1

* Basic on A319/A321
A319/A320/A321 EIS independent: after “clear” action

Start configuration

- Oil quantity
- Oil pressure
- Oil temperature
- Start valve position
- Engine bleed pressure
- Selected ignition
- Engine vibration

After start configuration

- Nacelle temperature
- TAT + 19 °C
- SAT + 18 °C
- 23 H 56
- G.W. 60300 kg
The following indications may appear on the PFD Flight Mode Annunciator (FMA), in upper left corner:

ASYM : Only one thrust lever is set to CLB or MCT position,

CLB : Flashing when aircraft above thrust reduction altitude and thrust levers not in CLB notch,

MCT : Flashing in case of engine failure if the non-affected thrust lever is not set at MCT,

A-FLOOR : α-floor condition encountered,

TOGA LK : When leaving α-floor condition and thrust still at MTO
Reverser deployment selection by positioning thrust lever into reverse area and by acting on independent locking levers.

Thrust lever position below rev. idle modulates reverse power.

Automatic engine idle setting in case of reverser malfunction.

Automatic max. reverse power limitation versus ambient conditions with full rearward thrust lever position.

Display of reverser status on ECAM upper DU.
A319/A320/A321 engine controls - start procedure

Upper ECAM DU

CFM

IAE

Lower ECAM DU
A319/A320/A321 engine controls - start procedure

- Engine mode selection
 ECAM ENG page is automatically displayed on lower ECAM.
 - Pack valves close (CFM engines)

- MASTER switch
 - Start valve opens
 - APU RPM increases
 - N2 increases
 - Oil pressure increases
 - Pack valves close (IAE engines)

Depending on N2 values reached:
- Ignition starts
- HP fuel valve opens

When sufficient N2 value is reached:
- Start valve closes, ignition stops, APU RPM returns to normal, pack valve reopens.

- Main and secondary parameters
 CHECK NORMAL

For abnormal conditions on ground:

 FADEC automatically controls:
 - Start abort in case of hot start, hung start or no light up.
 - Automatic engine crank after:
 - first start abort for IAE
 - any additional start attempts for CFM.
9. Auxiliary power unit
A319/A320/A321 APU – controls and display

Overhead panel

External panel (on nosewheel)

ECAM lower display:
APU system page

- APU generator line contactor
- APU generator parameters
- APU speed
- APU EGT
- APU bleed valve position
- APU bleed air pressure

- APU shut-off push-button

- MASTER SW
- START
- AVAIL

- APU shut-off push-button

- EXT PWR
- FLT INT
- NOT IN USE
- AVAIL
- COCKPIT CALL
- APU & AVNCS VENT
- APU RRE
- LIGHT TEST
- COCKPIT CALL
- RESET

- APU BLEED

- TAT + 19 °C
- SAT + 18 °C
- G.W. 60300 KG

- APU GEN
- 26%
- 116 V
- 400 Hz

- AVAIL

- FLAP OPEN

- EGT °C
- 3 580

- 0 100

- N %
On ground, the APU makes the aircraft independent of pneumatics and electrical sources by:

- providing bleed air for engine start and air conditioning systems;
- providing electrical power to supply the electrical system,

In flight, provision of back-up power for electrical and air conditioning systems,

The APU may be started using either the aircraft batteries, external power or normal aircraft supply. The normal flight envelope does not impose any limitations for starting.

The APU is automatically controlled by the Electronic Control Box (ECB) which is mainly acting as FADEC for monitoring start and shut-down sequences, bleed air and speed/temperature regulation.

Control and displays:

- on the overhead panel for APU normal operation and fire protection
- on the ECAM for APU parameters display
- on the external panel, under the nose fuselage, for APU shut down.
10. Automatic flight system
A319/A320/A321 FMGS system architecture

Yaw control

FAC 1

FAC 2

FMGC 1

FMGC 2

FADEC engine 1

FADEC engine 2

MCDU 1

MCDU 2

FCU
Composed of two Flight Management and Guidance Computers (FMGC), this pilot interactive system provides:

- flight management for navigation, performance optimization, radio navaid tuning and information display management,
- flight guidance for autopilot commands (to EFCS), flight director command bar inputs and thrust commands (to FADECs).

Two FACs (Flight Augmentation Computer) provide:

- rudder commands (yaw damping, rudder trim and limiting, turn coordination, automatic engine failure compensation),
- flight envelope and speed computation.

For operational convenience the FMGS offers two types of guidance concept:

- managed according to FMGS flight plan data entered into the Multipurpose Control and Display (MCDU),
- selected by the pilot through the Flight Control Unit (FCU).

The AP/FD achieves either:

- automatic control of the aircraft with regard to speed, lateral path and vertical plan as computed by the FMGCs,
- manual control of the aircraft with regard to speed and vertical plan (selected through FCU), lateral path (through FMGC or FCU).
Two FMGCs associated to two MCDUs provide a redundant configuration.

- **Normal mode operation**: **dual mode**
 - Each FMGC makes its own computation
 - One FMGC is **MASTER** – the other one is **SLAVE**
 - Both MCDUs act independently (entries are automatically recopied on the other MCDU and applied to both FMGCs)

- **Independent mode**
 - Automatically operative if mismatch between FMGCs
 - Independent operation of FMGCs with associated MCDUs. (Data insertion and display related to the side concerned).
 - One FMGC remains master.

- **Single mode**
 - One FMGC fails
 - Either MCDU can be used to enter or display data related to the remaining FMGC.
A319/A320/A321 FMGS crew interface

ND 1 control

FCU

ND 2 control

PFD 1

ND 1

Guidance display

Navigation display

ND 2

PFD 2

FMGC 1

FM+FG

FMGC 2

FM+FG

FADEC

MCDU 1

Thrust levers

MCDU 2
A319/A320/A321 FMGS crew interface

- Two MCDUs on the central pedestal provide long-term interface between the crew and FMGCs in terms of:
 - flight plan definition and display
 - data insertion (speeds, weights, cruise level, etc)
 - selection of specific functions (direct to, offset, secondary flight plan).

- One FCU on the central glareshield to provide short-term interface between crew and FMGCs.

- Two thrust levers linked to the FMGCs and FADECs provide autothrust or manual thrust control selection to the crew.

- Two PFDs and two NDs provide visual interface with flight management and guidance related data such as:

 on PFD:
 - FMGS guidance targets,
 - armed and active modes
 - system engagement status

 on ND:
 - flight plan presentation,
 - aircraft position and flight path,
 - navigation items (radio navaid, wind).
A319/A320/A321 FMGS flight guidance

- Managed guidance parameter window is dashed and auto control illuminated.

Managed speed guidance

Lateral selected guidance
The **FCU** is the main crew interface for short-term guidance with a single rule for the various control knobs:

- pull + rotate = pilot input
- push = return to FMGS control.

As an example, a change of altitude can be achieved by a double action on the FCU:

- either by selection of a new altitude through the FCU selector and validation of this new altitude pushing (management guidance) this knob.
- or by selection of a V/S through the FCU selector and validation of this new V/S by pulling this knob.

Actions on the FCU are displayed on the FCU as well as on the PFD in the dedicated **FMA** (Flight Management Annunciator) part.
Flight plan stringing

Flight plan definition by company route or city pair.

Departure and arrival procedures including associated, speed/altitude/time constraints.

Flight plan revision (offset, DIR, TO, holding pattern, alternative flight plan activation, …)

Secondary flight plan creation similar to primary flight plan.

Navigation

Automatic guidance along flight plan from take-off to approach.

Aircraft position determination.

Aircraft position referenced to the flight plan.

Automatic VOR/DME/ILS/ADF selection.

IRS alignment.

Ground speed and wind computation.

Optimum radio and inertial sensor mixing.

Provision for GPS and MLS.
Flight plan optimization, through the performance data base, in terms of:
- optimum speeds
- optimum altitudes.

The computations are based on:
- flight conditions (cruise level, weights, center of gravity, meteorological data)
- cost index
- speed entered on the FCU or given in the flight plan.

Performance predictions:
- time, altitude, speed at all waypoints
- estimated time of arrival, distance to destination, estimated fuel on board at destination.

Advisory functions:
- fuel planning
- optimum altitudes and step climb.

Full vertical guidance related to flight plan predictions from initial climb to approach.
A319/A320/A321 FMGS - lateral navigation

- Radio or GPIRS position (if GPS primary installed)
- FMGC position
- Mix IRS = mean IRS
- GIPRS = GPS position integrity verified against IRS position

To see the navaids used for radio position
A319/A320/A321 FMGS - lateral navigation

- Position computation:
 - before flight, the three IRSs are aligned on airfield or gate position. (manually or via database)
 - at take-off, the position is automatically updated to the runway threshold
 - in flight, position updating is computed using GPS if installed, and radio navaids (DME, VOR, ILS)

 The FMGC position depends upon the IRS’s mean, the GPS and the radio position.

- Navigation mode selection:
 - if the aircraft is equipped with GPS primary, the FMGC uses GPIRS position in priority
 - if the GPIRS position is not available or if the aircraft is not equipped with GPS primary, depending upon availability of navaids and sensors, FMGC automatically tunes the best navaids to compute the most accurate position.

The navigation modes may be:

En route:
- IRS – GPS (if GPS installed)
- IRS – DME
- IRS – VOR/DME
- IRS only

In approach:
- IRS – GPS (if GPS installed)
- IRS – DME
- IRS – VOR/DME
- IRS – ILS/DME
A319/A320/A321 FMGS - lateral navigation

MCDU

ECON DES
CRZ OPT REC MAX
FL290 FL350 FL390

1L 1R

REQD DIST TO LAND = 70NM
DIR DIST TO DEST = 89NM

2L 2R

BRG / DIST
---* / ----* TO ()

3L 3R

UPDATE AT ()*

4L 4R

VOR 1 / FREQ ACY FREQ/VOR 2
ATH / 114.4 HIGH 117.2 / DDM

5L 5R

6L 6R

ND

GS394T AS 388
249/16

LMG/004 93 NM
18 : 35

NAV ACCY UPGRADED
● FMGC provides the crew with lateral position and its associated accuracy criteria which depend upon:

- FMGC Error Position Estimate (EPE)
- zone currently flown (en route, terminal, approach)
- Airworthiness Authorities Accuracy Requirements (AAAR)

● If $EPE \leq AAAR$ then HIGH is displayed on MCDU and the computed positions may be used without restriction.

● If $EPE > AAAR$ then LOW is displayed on MCDU and the position must be cross-checked with raw data (ADF/VOR needles, DME reading).

● Each time HIGH (or LOW) reverts to LOW (or HIGH) the message NAV ACCY DOWNGRADED (or UPGRADED) is displayed on NDs and MCDUs.
A319/A320/A321 flight deck – main features

- Take-off
 - Acceleration by energy sharing
 - Thrust reduction
 - Runway

- Climb
 - V2+10
 - Level segment
 - Top of climb

- Cruise
 - ECON CRZ Mach
 - Transition from speed to Mach

- Descent
 - Deceleration at 500ft/min average
 - "At or below" constraint
 - "At" constraint
 - 100ft: VAPP
 - Runway

- Approach
 - Speed limit
 - "At or below" constraint
 - Top of descent
A319/A320/A321 FMGS – vertical profile

- **Take-off:**
 SRS control law maintains $V_2 + 10$ up to thrust reduction altitude where max climb thrust is applied. $V_2 + 10$ is held up to acceleration altitude (ACC LT).

- **Climb:**
 Energy sharing is applied for acceleration (70% thrust) and for altitude (30% thrust) from ACC ALT up to first climb speed. Max climb thrust is kept – Altitude constraints are taken into account.

- **CRZ:**
 Steps may exist and/or may be inserted.

- **Descent:**
 Top of Descent (T/D) is provided on ND. From T/D down to the highest altitude constraint, ECON descent speed is supposed to be held on elevator and IDLE $+ \Delta$ on thrust. Then, if this status can no longer be kept, geometric segments will be followed between the constraints.

- **Approach:**
 From DECEL point a deceleration allows configuration changes in level flight.
 Approach phase is planned to reach approach speed at 1000ft above ground level.
A319/A320/A321 FMGS – AP / FD modes

<table>
<thead>
<tr>
<th>Guidance</th>
<th>Managed</th>
<th>Selected</th>
</tr>
</thead>
</table>
| **Lateral** | ● NAV and APP NAV
● APPR
● LOC
● RWY
● RWY TRK
● G.A. TRK | ● HDG - TRK |
| **Vertical** | ● CLB
● DES
● SRS (TO / GA)
● G / S
● FLARE
● FINAL | ● OP CLB
● OP DES
● Expedite (towards altitude selected on FCU but managed speed)
● ALT
● V / S – FPA |
| **Speed** | ● F. PLN reference (ex. : optimum)
● Expedite | ● FCU selected |
Managed guidance

Take-off:
- **RWY**: automatic runway axis follow up through ILS use
- **RWY. TRK**: follow up of the memorized runway axis
- **SRS**: pitch guidance to maintain V2 + 10

Climb/Cruise/Descent:
- **NAV**: lateral guidance along the defined F.PLN
- **CLB/DES**: vertical guidance with respect of all the F.PLN defined constraints
- **APP NAV**: lateral guidance along a defined non precision approach

Approach and landing:
- **APPR**: ILS approach (ILS beams capture and track) and non precision approach
- **LOC**: LOC use only (capture and track)
- **FLARE**: automatically performed around 30ft
- **FINAL**: vertical guidance along a defined non precision approach

Selected guidance

Lateral:
- **HDG/TRK**: selected on FCU

Vertical:
- **OP CLB/OP DES**: open modes for level changes with a fixed thrust and speed held on elevator
- **EXPED**: level change with maximum climb/descent
- **ALT**: altitude capture and hold
- **V/S-FPA**: vertical speed or flight path angle track
A319/A320/A321 ATS – controls and display

- **Illuminated greed when A/THR engaged**
- **T.O**
- **G.A**
- **FLX T.O.**
- **MCT**
- **A/THR range**
- **Idle**
- **Reverse**
- **FCU**
 - Displayed - Cyan when engaged
 - Displayed - White when active
- **PFD**
- **Instinctive disconnect pushbutton**
- **Thrust levers**
- **Reverse unlock**

STL 945.7136/97 10.20
Autothrust (A/THR) is part of FMGC

No mechanical linkage between levers and engines. Thrust levers position is measured and transmitted to the FADEC in digital form.

Autothrust:
- either ensures thrust control depending upon AP/FD modes (if these are engaged)
- or manages thrust to hold the current target speed (if no AP/FD engaged)
- thrust control is achieved without moving the levers.

A/THR engagement status and thrust limit mode depend upon thrust lever angle (TLA). Thrust limit selection and computation are made by the FADEC.

5 positions are fitted within the levers position range.
A319/A320/A321 FMGS – autothrust function

- Not engaged
 - Both thrust levers at idle result in REV A/THR disengagement

- Engaged
 - Not active

- Engaged
 - Active
 - Both thrust levers at idle result in REV A/THR disengagement
Operational rules

- A/THR can be engaged:
 - manually by pressing the A/THR pushbutton
 - automatically, by setting the thrust levers at TO/GA or FLEX position.

- A/THR is then activated if thrust levers are set between CL (included) and IDLE (excluded) gates.
 In this case, commanded thrust is limited by TLA (except ALPHA-FLOOR activation).

- A/THR not active (A/THR p/b on FCU extinguished) and thrust levers within A/THR range
 Pressing A/THR p/b on FCU activates A/THR

- A/THR can be disengaged by:
 Depressing the instinctive disconnect P/B on the levers or depressing the illuminated A/THR P/B on FCU or setting both thrust levers in IDLE gate.
A319/A320/A321 FMGS – autothrust function

- If the levers are in CLB gate and A/THR is disengaged then:
 - thrust is frozen at its current value until thrust levers are moved out of the gate.
 - THR LK amber message appear on PFD.

- If the levers are not in CLB gate when A/THR is disengaged then:
 - thrust is not frozen but is set according to the lever position.

- Engagement of A/THR mode is automatic according to AP/FD engaged mode:

<table>
<thead>
<tr>
<th>AP/FD mode</th>
<th>ATS mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/S-FPA</td>
<td>SPD/Mach</td>
</tr>
<tr>
<td>ALT (ACQ/HOLD)</td>
<td></td>
</tr>
<tr>
<td>Expedite</td>
<td>Thrust</td>
</tr>
<tr>
<td>Descent/Climb</td>
<td>Thrust/SPD/Mach</td>
</tr>
<tr>
<td>SPD/Mach</td>
<td>Thrust</td>
</tr>
<tr>
<td>Approach final descent</td>
<td>SPD</td>
</tr>
<tr>
<td>glide flare</td>
<td>SPD Retard</td>
</tr>
<tr>
<td>TO/ GA</td>
<td>ATS Armed</td>
</tr>
</tbody>
</table>
Autothrust operation

- Take-off performed:
 - in TO limit mode with levers in TO.GA notch
 - in FLEX TO limit mode with levers in FLX TO/MCT detent provided a FLX temperature has been entered on MCDU (take-off page). Lowest FLX TO thrust is automatically limited to CL thrust.

Note: In both cases, this manoeuvre also engages the flight director TO mode.

- Once out of take-off (or go around), the nominal phases in autothrust are always:
 - CL gate in twin engine situation
 - MCT gate in single engine situation

- One lever in CL gate and the other out of this gate (in twin-engine operation) causes the engines to be regulated differently. ASYM amber message appears on PFD

- In approach, A/THR control depends on type of approach (ILS, non precision) and vertical mode selected on FCU.

- If Alpha floor function is activated, TO/GA thrust is automatically applied whatever the lever position and A/THR status are.
11. Environmental control system
A319/A320/A321 ECS – system schematic

Air conditioning

Pneumatic

Emergency ram air
LP ground connection
Air generation
Air distribution
Recirculation fan
Filter
Non-return valve
Trim air valves
Flight deck
Electr. comp.
Electr. vent
Venturi
Mixer unit
Non-return valve
Non-return valve
Non-return valve
Pressure regulating valve
Hot manifold
Trim air valves
Trim air valves
Trim air valves
Extraction fan
Fwd cargo com.
Fwd zone
Aft zone
Aft cargo comp.
Cabin
Ambient air
Outflow valve
Safety valve
Trim air valve
Pressure regulating valve

Eng 2
Cross-bleed valve
HP ground-connection
APU bleed valve
APU control unit
Bleed air regulation
Eng 1
Extraction fan
To wing anti ice
To wing
Recirculation fan
Recirculation fan
Non-return valve
Non-return valve
Non-return valve

ATA 21
ATA 36
Pack 1
Pack valves
Pack 2
Trim air valve
Pressureregulating valve
Outflow valve
A319/A320/A321 ECS – temperature and flow control

Variable flow selector

Space optional

FWD + AFT cargo heat

Automatic temperature control selectors

Flight deck

System display:
Cruise page

System display:
CON system page

System display:
BLEED system page

Cargo heat - optional
Air conditioning

Continuous air renewal and temperature regulation in three independently controlled zones (cockpit, forward cabin, aft cabin).

Downstream both packs, a dedicated unit mixes cold air with recirculated cabin air for distribution to the three zones.

Optimized air temperature is obtained by adding engine hot air to mixing unit air via three trim air valves.

Cabin and pack temperature regulation are achieved by a zone controller and two pack controllers.

Pneumatic

High pressure air is supplied for air conditioning, air starting, wing anti-ice, water pressurization, hydraulic reservoir pressurization.

System operation is electrically monitored by two Bleed Monitoring Computers (BMC), and is pneumatically controlled.

A leak detection system is provided to detect any overheat in the vicinity of the hot air ducts.
A319/A320/A321 ECS flight deck – main features

Avionics bay

Skin heat exchanger
Outlet bypass valve

Open if T > 35°C in flight

Skin heat exchanger

Inlet valve
Blower
Fan
Blower
fan
Evaporator
Ground cooling unit (optional)
Air conditioning duct
Condensor

Extract fan
Avionics equipment
Extract valve
Skin heat exchange inlet bypass valve

Ground cooling unit (optional)

Skin heat exchanger isolation valve

Overboard
Closed on ground
Cargo underfloor

STL 945.7136/97
Avionics ventilation

Provide ventilation and cooling of avionics and electronic equipment under digital control (AEVC) and without any crew intervention.

Three main operational configurations are automatically selected:

- closed-circuit configuration (flight) by means of an aircraft skin heat exchanger and a pair blower and extract fans,
- open-circuit configuration using outside fresh air through opening of inlet and extract valves,
- an intermediate flight configuration is selected in case of high temperature, whereby the skin exchanger outlet bypass valve is opened and the extract valve is maintained half open.

Battery ventilation

Achieved by ambient air being drawn around the batteries and then vented directly outboard via a venturi.

Lavatory & galley ventilation

Achieved by ambient cabin air extracted by a fan exhausted near the outflow valve.
A319/A320/A321 ECS – cabin pressure control

- Cabin pressure panel
- Unpressurized areas
- Outflow valve
- Safety valves
- Controllers
- ADIRS
- FMGS
- Cabin pressure panel
- Manual control
- 3 motors and gears
- Flap type outflow valve
- DU 2 CRZ page
- DU 2 press system page

Cabin pressure controller 1
Cabin pressure controller 2

Cabin pressure controller

Unpressurized areas

FMGS

Cabin pressure controller 1
Cabin pressure controller 2

3 motors and gears

Flap type outflow valve

DU 2 CRZ page

DU 2 press system page

Cabin pressure controller

Unpressurized areas
The pressurization control system operates fully automatically without any crew action.

Dual system with automatic switchover after failure. Alternative use for each flight. A single outflow valve is operated by one of three independent electric motors. Two of these are associated with automatic controllers.

In normal operation, cabin altitude and rate of change are automatically controlled from FMGC flight plan data:

- cruise FL, landing field elevation, QNH,
- time to top of climb, time to landing.

In case of dual FMGC failure, the crew has to manually select the landing elevation. The cabin altitude varies according to a preprogrammed law.

In case of failure of both pressurization system autocontrollers, the manual back-up mode is provided through the third outflow valve motor.
12. Electronic instrument system
Inputs for EFIS displays:
- ADIRS
- FMGC
- FACs
- FCU
- ADFs, VORs, DMEs, ILS, Ras’ WXRs.

Input for ECAM display:
- FADEC
- FQI
- WBCs

Aircraft systems sensors
- Inputs for: red warnings
- system pages
- flight phases

Aircraft systems sensors
- Inputs for: amber caution
- system pages
A319/A320/A321 EIS - components

- Six identical (7.25 in x 7.25 in) cathode ray tubes Display Units (DU), including integrated graphics generator:
 - Two primary flight displays + two navigation display (EFIS)
 - One engine warning display + one system display (ECAM)

- Three Display Management Computers (DMC)
 - Generating images to be displayed on PFD, ND and ECAM Dus
 - Digital data link to display units
 - No.3 DMC may replace either No.1 or No.2

- Two System Data Acquisition Concentrators (SDAC)
 - Acquiring systems data for transmission of caution/warnings to FWCs and systems condition to DMCs
 - Operations not affected with either SDAC failure.

- Two Flight Warning Computers (FWC)
 - Generating alert messages, aural alerts and procedural messages for display on ECAM
 - Operations not affected with either FWC failure.
A319/A320/A321 EIS - EFIS arrangement

- Primary flight display
 - Attitude
 - Airspeed
 - Altitude/vertical speed
 - Heading
 - ILS deviation/marker
 - Radio altitude
 - AFS status (FMA)

- Navigation display, three modes:
 - **ROSE** mode (ILS, VOR or NAV) : aircraft symbol in screen centre, heading up with radar available
 - **ARC** mode : aircraft symbol in lower part of the screen, heading up with radar available
 - **PLAN** mode : display centred on selected waypoint, north up

Note: In ROSE-NAV, ARC and PLAN modes, map data from FMS are presented
A319/A320/A321 EIS - PFD: climb – FMS guidance

- **THR CLB**: Climb thrust.
- **CLB ALT**: Climb altitude.
- **NAV**: Navigation.

ALERTS
- **ALT acquire armed**: Indicates that the altitude acquisition mode is armed.
- **Speed select index from FMGS or FCU**: Shows the speed select index as set by the FMGS or FCU.
- **Actual airspeed and speed trend**: Displays the actual airspeed and the trend of speed.
- **ECON speed range**: Represents the economic speed range.
- **Aircraft track**: Shows the aircraft's track.
- **Mach number**: Displays the aircraft's mach number.
- **.64**: Indicates the selected Mach number.
- **300**: Displays the selected airspeed.
- **2000 ft minute**: Indicates the vertical speed of 2000 feet per minute.
- **FL290**: Shows the selected flight level.
- **20**: Displays the selected vertical speed.
- **STD**: Indicates the standard altimeter setting.
- **Magnetic heading reference**: Shows the magnetic heading reference.

Operational Configurations
- **Normal AFS operational configuration**: Indicates the normal automatic flight system operational configuration.

Selected Altitude
- **Selected altitude**: Indicates the selected altitude.

Vertical Speed
- **Vertical speed 2000 ft minute**: Shows the vertical speed of 2000 feet per minute.
A319/A320/A321 EIS - PFD: approach configuration

- Approach capability and decision height
- V_{FE} or actual configuration
- V_{FE} of the next configuration
- Minimum selectable speed
- Alpha protection speed
- Alpha max speed
- Radio altitude
- ILS ident + freq
- ILS – DME distance
- G / S and LOC scales and DEV indexes
- Outer marker “light”
- Altimeter baro setting display
- ILS course
- AP / FD and A / THR engagement status
- Selected altitude
- Altitude indication
- Approach capability and decision height
- Selected altitude
- Altimeter baro setting display
- ILS course
A319/A320/A321 EIS - ND: ROSE / VOR mode

- True air speed
 - GS 390° 095/20
 - TAS 380

- Lateral deviation bar

- Elapsed time
 - 2'30"

- VOR 1 identification
 - VOR 1
 - TRO

- DME distance
 - 15 NM

- VOR 1
 - CRS 010°
 - TRO

- ADF 2
 - Identification

- Actual track
 - 116.00

- Selected heading
A319/A320/A321 EIS - ND : ROSE / ILS mode

- Wind direction
- Wind force
- Localizer deviation bar
- Glide deviation
- Glide scale
- VOR 1
 M = manually tuned

GS 165
095/20

TAS 150

ILS APP

ILS2 109.30
330°

CRS

TBN

VOR 1

TOU M

15.3 NM
A319/A320/A321 EIS - ND : PLAN mode

Cross track error

GS 388
249/16
TAS 394
BRACO 097°
33 NM
18:35

GEN
FRZ
ANC
BOL
PUMA

W
S
E
N

.7L
A319/A320/A321 EIS - ND : TCAS (optional)

Selected Range : 20 nm

Resolution advisory : RED
Traffic advisory : AMBER
Off scale intruder
No bearing intruders

Proximate aircraft : WHITE
2.5 nm range ring
A319/A320/A321 EIS - ECAM arrangement

- ECAM (EFIS) colour symbology

 - Warnings : RED for configuration or failure needing immediate action
 - Cautions : AMBER for configuration or failure needing awareness
 - Indications : GREEN for normal long term operations
 WHITE for titling and guiding remarks
 BLUE for actions to be carried out
 MAGENTA for particular messages, e.g. inhibitions

- ECAM arrangement

 Upper DU

 - Engine primary indication
 - Fuel quantity information
 - Slats/flaps position
 - Memo/configuration data or warning/caution messages

 Lower DU

 - Aircraft system synoptic diagram or status messages
ECAM sound Symbology

<table>
<thead>
<tr>
<th>Warning signal</th>
<th>Condition</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous repetitive chime</td>
<td>Red warnings</td>
<td>Permanent</td>
</tr>
<tr>
<td>Single chime</td>
<td>Amber caution</td>
<td>1 / 2 second</td>
</tr>
<tr>
<td>Cavalry change</td>
<td>A/P disconnection by take-over pb</td>
<td>1.5 second</td>
</tr>
<tr>
<td></td>
<td>A/P disconnection due to failure</td>
<td>Permanent</td>
</tr>
<tr>
<td>Click</td>
<td>Landing capability change</td>
<td>½ second (three pulses)</td>
</tr>
<tr>
<td>Cricket</td>
<td>Stall</td>
<td>Permanent</td>
</tr>
<tr>
<td>Intermittent buzzer</td>
<td>SELCAL call</td>
<td>Permanent</td>
</tr>
<tr>
<td>Continuous buzzer</td>
<td>Cabin call</td>
<td>Permanent</td>
</tr>
<tr>
<td>‘C’ chord</td>
<td>Altitude alert</td>
<td>1.5 second or Permanent</td>
</tr>
<tr>
<td>Auto call-out (synthetic voice)</td>
<td>Height announcement below 400ft</td>
<td>Permanent</td>
</tr>
<tr>
<td>Ground proximity warning (synthetic voice)</td>
<td>GWPS warning</td>
<td>Permanent</td>
</tr>
</tbody>
</table>
A319/A320/A321 EIS - ECAM upper display

Fuel quantity indication
Flap / slats position indication
Primary engine indications

MEMO: landing

Primary engine indications:
- N1 %: 25.1
- N2 %: 60.1
- EGT °C: 390
- F.F KG/H: 250

Fuel quantity indication:
- FOB: 5000 KG

Flap / slats position indication:
- Cl: 90.5%
- LDG INHIB
- LDG GEAR
- DN
- SIGNS ON
- SPLR
- ARM
- FLAPS FULL
- STS
- APU BLEED
- AUTO BRAKE LO
The ECAM upper DU can provide the following memo items for systems which can be used temporarily and for which no dedicated annunciator lights are provided.

Specific memos for take-off and landing are also available when appropriate.

<table>
<thead>
<tr>
<th>IRS IN ALIGN X MIN</th>
<th>SPEED BRK</th>
<th>SWITCHING PNL</th>
<th>AUTO BRK……..MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRS ALIGNED</td>
<td>PARK BRK</td>
<td>GPWS FLAP 3</td>
<td>SIGNSON</td>
</tr>
<tr>
<td>SEA BELTS</td>
<td>HYD PTU</td>
<td>ACARS STBY</td>
<td>SPLRSARM</td>
</tr>
<tr>
<td>NO SMOKING</td>
<td>RAT OUT</td>
<td>MAN LDG ELEV</td>
<td>FLAPSTO</td>
</tr>
<tr>
<td>REFUEL G</td>
<td>EMER GEN</td>
<td>CRT TK FEEDG</td>
<td>TO CONFIG TEST</td>
</tr>
<tr>
<td>OUTR CELL FUELXFRD</td>
<td>RAM AIR ON</td>
<td>FUEL X FEED</td>
<td>CABINREADY</td>
</tr>
<tr>
<td>STROBE LT OFF</td>
<td>ACARS CALL</td>
<td>T.O. INHIB</td>
<td>TO MEMO</td>
</tr>
<tr>
<td>N. WHEEL STEERG DISC</td>
<td>ACARS MSG.</td>
<td>LDG INHIB</td>
<td>LDG MEMO</td>
</tr>
<tr>
<td>IGNITION</td>
<td>ENG A.ICE</td>
<td>LAND ASAP</td>
<td>LDG GEAR.......DN</td>
</tr>
<tr>
<td>GND SPLRS ARMED</td>
<td>WING A.ICE</td>
<td></td>
<td>SIGNSON</td>
</tr>
<tr>
<td>GPWS FLAP MODE OFF</td>
<td>APU AVAIL</td>
<td>AUTO BRK</td>
<td>SPLRSARM</td>
</tr>
<tr>
<td></td>
<td>APU BLEED</td>
<td>{</td>
<td>FLAPSFULL</td>
</tr>
<tr>
<td></td>
<td>LDG LT</td>
<td>OFF</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>BRK FAN</td>
<td>LO</td>
<td>CONFIG 3</td>
</tr>
<tr>
<td></td>
<td>AUDIO 3 X FRD</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

SPLRS ARMED
FLAPS TO
CONFIG 3

LDG GEAR DN
SIGNS ON
SPLRS ARM
FLAPS FULL

or

CONFIG 3
A319/A320/A321 EIS - ECAM lower DU

Cruise page

Electrical system page with advisory

Title of the system page pulsing

Value pulsing
The ECAM lower DU presents either (one of twelve) system pages or status pages.

Selection of **System page** is:

- either manual from the ECAM control panel,

- or automatic

 in association with a warning/caution message,

 with an advisory pulse message when a parameter drifts out of range

 according to flight phase.

12 available pages:

- Air bleed,
- Air conditioning,
- Cabin pressurization,
- Electrical power supply – AC / DC,
- Flight controls,
- Fuel,
- Hydraulics,
- APU,
- Engine monitoring,
- Doors / oxygen,
- Braking (wheel, ground spoiler),
- Cruise.
** APU page or EBG START page automatically displayed during start sequence.

* FLT CTL page replaces wheel page for 20 seconds when either sidestick is moved or when rudder deflection is above 22°.
The operational summary of the aircraft status after a failure is displayed on the lower ECAM DU and includes:

(a) Postponable procedures not displayed on first page (blue)
(b) Limitations (speed, flight level…) (blue)
(c) Informations (green)
(d) Cancelled cautions or warnings (white)
(e) Inoperative systems (amber)
(f) Maintenance status (white)
A319/A320/A321 EIS – ECAM control / switching panels
A319/A320/A321 EIS – Dus reconfiguration

- **Master warning (red)**
- **Master caution (amber)**

Reconfiguration capability:
- Single failure
- Multiple failure
Independent failure presentation sequence

Example: electrical generator fault
The following displays appear, provided no flight phase inhibition is active.

Failure identification

Corrective actions

The corresponding system page appears automatically.
A319/A320/A321 EIS – independent failure: after corrective action

ECAM upper display

ECAM lower display: ELEC page

Actions lines automatically cleared when corresponding actions performed

ELEC page changes according to the corrective action
A319/A320/A321 EIS – independent failure: after “clear” action

- Warning message is cleared
- Memo comes back

- Status page appears automatically
- When “clear” button is pressed again
 flight phase system page comes back
Primary / secondary failure presentation sequence

Example: Blue hydraulic reservoir low air pressure corrective action leading to primary failure: Blue hydraulic system low pressure
A319/A320/A321 – EIS – primary / secondary failure: initiation

1st step: independent failure detection

Upper display

- HYD B RESVR LO AIR PR
- IF PRESS FLUCTUATES: BLUE ELEC PUMP OFF

Lower display: HYD page

- GREEN 3000 PSI
- BLUE 3000 PSI
- YELLOW 3000 PSI
- RAT >
- PTU >
- ELEC
- LO AIR PRESS
- TAT +19 °C
- SAT +18 °C
- G.W. 60300 KG

Failure identification Corrective action The corresponding system page appears automatically
2nd step: after performing the corrective action

Upper display

Display of resulting primary failure

Resulting secondary failure is displayed

Lower display: HYD page

The corresponding system page is automatically updated
3rd step: first “CLEAR”

- Warning message is cleared
- Memo comes back

Resulting secondary failure (spoiler fault and all actuator blue press indications amber) related to primary failure (Blue system low press)

The system page corresponding to the secondary failure is automatically displayed
4th step: second “CLEAR”

Upper display

Lower display: status page

STATUS

APPR PROC | HYD LO PR
- BLUE ELEC PUMP AUTO
SLATS SLOW
CAT 2 ONLY
LDG DIST x 1.1

INOP SYS
BLUE HYD
SPLR 3
CAT 3

SEAT BELTS
NO SMOKING

- Status page appears automatically after second “clear”
5th step: third “CLEAR”

- When “clear” button is pressed for the third consecutive time, flight phase system page comes back.

Display of entire memo

Status reminder

ENGINE

F.USED KG 1560
OIL QT 11.5
VIB (N1) 0.8 0.9
VIB (N2) 1.2 1.3

AIR

CDG ELEV AUTO 500 FT
CAB V/S FT/MN 250 220
CAB ALT FT 4150

TAT °C 19
SAT °C 18

G.W. 60300 KG
13. Radio management and communication
A319/A320/A321 radio management concept

Radio Management Panel (RMP)

- Frequency selection (two concentric rotation knobs)
- Isolation switch
- Radio NAV back-up section (when both MCDUs or FMGCs failed)
- Radio COMM selection keys
- Transfer function

ACTIVE

STBY / CRS

NAV VOR VOR MLS ADF BFO

VHF1 VHF2 VHF3

HF1 SEL HF2 AM

ON OFF
A319/A320/A321 radio management concept

- Radio Management Panel (RMP) system provides:
 - crew control of all radio communication systems
 - back-up of the two FMGCs for controlling all radio navigation systems

- Basic installation includes:
 - two RMPs on pedestal
 - full provision for installation of a third RMP on overhead panel

- The ATC transponder is tuned by a separate conventional control panel.
A319/A320/A321 RMP architecture
A319/A320/A321 radio management concept architecture

Communication tuning

Any radio communication system can be tuned from any of two RMPs. In case of failure any RMP can take over from the other one.

Navigation tuning

Three different operating modes exist.

- **Automatic**: VOR/DME, ILS and ADF are automatically tuning controlled by the FMGS.

- **Manual tuning**: for selection if a specific frequency through the FMGS CDU without affecting the automatic function of the FMGS.

- **Back-up tuning**: when both FMGCs are inoperative or when an emergency electrical source is in operation, any NAV receiver may be tuned by the crew from any RMP; each RMP controls on side receivers.

When one of both FMGCs is inoperative, the remaining one controls all receivers.
A319/A320/A321 COMM – audio control panel

Transmission keys and SELCAL lights

Transmission keys and CALL lights

Interphone/Off /Radio switch

Audio listening and volume control

PA key for boomset oxygen mask or hand microphone operation

Voice/ident filter key

SELCAL and CALL reset key

Radio nav audio listening and volume control
The audio integrating system provides the management of all audio signals produced by and feeding the radio-communications, radio navigation and interphone systems:

- Basic installation includes:
 - three Audio Control Panel (ACP) – two on pedestal, one on overhead panel
 - one Audio Management Unit (AMU) in avionics bay
 - one SELCAL code selector in avionics bay.

- Provision exists for supplementary ACP’s

- All selections and volume adjustments carried out by crew through ACPs

- All ACPs are fitted for maximum capacity (three VHF, two HF, public address, calls, two VOR, two ADF, ILS and provision for MLS).

- Each ACP and associated AMU electronic card are fully independent and microprocessor controlled.
14. Maintenance centralized fault display system
General

Line maintenance of the electronic systems is based on the use of a Centralized Fault Display System (CFDS).

The purpose of the CFDS is to give maintenance technicians a central maintenance aid to intervene at system or subsystem level from multipurpose CDUs located in the cockpit:

- to read the maintenance information
- to initiate various tests.

Two levels of maintenance should be possible using the CFDS:

- maintenance at an out-station (LRU change)
- maintenance in the hangar or at the main base (troubleshooting).
A319/A320/A321 CFDS - architecture

Aircraft systems

General parameters:
- date / time
- flight No.
- aircraft identification
- flight phases

CFDIU

AIDS

FMGS 1 and 2

MCDU 1

MCDU 2

ACARS

VHF 3

Printer

BITE

Aircraft system
Advantages of the CFDS

A revised maintenance concept provides a:

- reduction of the duration of operations
- reduction of the maintenance crew training time
- simplification of technical documentation
- standardization of the equipment
- simplification of the computers which no longer display any BITE;

Integration of the CFDS

Integrated in the Maintenance and Recording Data System (MRDS) comprising:

- Basic equipment
 - A Centralized Fault Display Interface Unit (CFDIU)
 - A digital Flight Data Recorder (DFDR) and its interface unit
 - Two multipurpose CDUs (MCDUS) located on the pedestal.

Note: The MCDUS can be used for: FMS, MRDS options (ACARS, AIDS).

- Optional equipment
 - A multi-use printer
 - A quick access recorder (QAR)
 - An AIDS
A319/A320/A321 CFDS – example of use - 1

MCDU MENU
< FMGC
< DATA LINK
< AIDS
< CFDS

RETURN >
SELECT DESIRED SYSTEM

LAST LEG REPORT 17 DEC
GMT: 0927 ATA: 26-12-00
ENG 1 LOOP A SUPPLY
GMT: 1013 ATA: 22-00-00
NO DATA FROM AFS
GMT: 1032 ATA: 34-36-00
GLIDE ANTENNA

< RETURN PRINT *

CFDS
< LAST LEG REPORT
< LAST LEG ECAM REPORT
< PREVIOUS LEGS REPORT
< AVIONICS STATUS
< SYSTEM REPORT / TEST POST
< SEND FLT REP PRINT *

PREV LEGS REP
LEG DATE GMT ATA
-04 DEC15 2209 34-10-00
ADC 1
-23 NOV30 0815 34-11-01
ALPHA 1 PROBE
-58 NOV14 1958 77-11-00
N1 ≠ SENSOR

< RETURN PRINT *
The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof.

This document is the property of Airbus Industrie and is supplied on the express condition that it is to be treated as confidential. No use or reproduction may be made thereof other than that expressly authorised.

Printed in France